ORGANIC LETTERS

2009 Vol. 11, No. 6 1285–1288

Synthesis of 3,4-Disubstituted Maleimides by Selective Cross-Coupling Reactions Using Indium Organometallics[†]

Latifa Bouissane, José Pérez Sestelo,* and Luis A. Sarandeses*

Departamento de Química Fundamental, Universidade da Coruña, E-15071 A Coruña, Spain

qfsarand@udc.es; sestelo@udc.es

Received January 13, 2009

ABSTRACT

Unsymmetrical 3,4-disubstituted maleimides have been synthesized by palladium-catalyzed cross-coupling reactions of indium organometallics with 3,4-dihalomaleimides. The synthesis was performed by stepwise or sequential one-pot palladium-catalyzed cross-coupling reactions with various triorganoindium reagents. This method was used to prepare a wide variety of alkyl, aryl, heteroaryl, and alkynyl 3,4-disubstituted maleimides in good yields and with high selectivity and atom economy.

3,4-Disubstituted maleimides are an important family of natural and synthetic products with valuable pharmacological properties.¹ They are potent agents for the inhibition of protein kinases, especially PKC, an important target in cancer chemotherapy,² and some members of this family are in clinical trials as anticancer drugs.³ Other compounds exhibit

antibacterial, antiviral, antimicrobial, and antigenic activities.⁴ Furthermore, 3,4-bisindolylmaleimides have found applications as light emitting diodes (LED)⁵ and have also been used in the development of photocatalysts immobilized on surfaces.⁶

 $^{^{\}dagger}$ Dedicated to Professor Luis Castedo on the occasion of his 70th birthday.

 ⁽a) Knölker, H.-J.; Reddy, K. R. Chem. Rev. 2002, 102, 4303–4427.
 (b) Sánchez, C.; Méndez, C.; Salas, J. A. Nat. Prod. Rep. 2006, 23, 1007–1045.

^{(2) (}a) Davis, P. D.; Hill, C. H.; Lawton, G.; Nixon, J. S.; Wilkinson, S. E.; Hurst, S. A.; Keech, E.; Turner, S. E. J. Med. Chem. 1992, 35, 177–184. (b) Pindur, U.; Kim, Y.-S.; Mehrabani, F. Curr. Med. Chem. 1999, 6, 29–69. (c) Kozikowski, A. P.; Gaisina, I. N.; Petukhov, P. A.; Sridhar, J.; King, L. T.; Blond, S. Y.; Duka, T.; Rusnak, M.; Sidhu, A. ChemMedChem 2006, 1, 256–266. (d) Dessalew, N.; Bharatam, P. V. Eur. J. Med. Chem. 2007, 42, 1014–1027.

^{(3) (}a) Kanzawa, F.; Nishio, K.; Kubota, N.; Saijo, N. Cancer Res. **1995**, 55, 2806–2813. (b) Prudhomme, M. Eur. J. Med. Chem. **2003**, 38, 123–140

^{(4) (}a) Moreau, P.; Anizon, F.; Sancelme, M.; Prudhomme, M.; Bailly, C.; Carrasco, C.; Ollier, M.; Severe, D.; Riou, J.-F.; Fabbro, D.; Meyer, T.; Aubertin, A.-M. J. Med. Chem. 1998, 41, 1631–1640. (b) Coghlan, M. P.; Culbert, A. A.; Cross, D. A. E.; Corcoran, S. L.; Yates, J. W.; Pearce, N. J.; Rausch, O. L.; Murphy, G. J.; Carter, P. S.; Cox, L. R.; Mills, D.; Brown, M. J.; Haigh, D.; Ward, R. W.; Smith, D. G.; Murray, K. J.; Reith, A. D.; Holder, J. C. Chem. Biol. 2000, 7, 793–803. (c) Hudkins, R. L.; Johnson, N. W.; Angeles, T. S.; Gessner, G. W.; Mallamo, J. P. J. Med. Chem. 2007, 50, 433–441.

⁽⁵⁾ Kaletas, B. K.; Mandl, C.; Van der Zwan, G.; Fanti, M.; Zerbetto, F.; De Cola, L.; König, B.; Williams, R. M. *J. Phys. Chem. A* **2005**, *109*, 6440–6449.

^{(6) (}a) Kaletas, B. K.; Kozhevnikov, V. N.; Zimine, M.; Williams, R. M.; König, B.; De Cola, L. *Eur. J. Org. Chem.* **2005**, 3443–3449. (b) Kaletas, B. K.; Joshi, H. C.; Van der Zwan, G.; Fanti, M.; Zerbetto, F.; Goubitz, K.; De Cola, L.; König, B.; Williams, R. M. *J. Phys. Chem. A* **2005**, *109*, 9443–9455.

The synthesis of 3,4-disubstituted maleimides has generally been carried out by two main approaches: a linear synthetic sequence based on the formation of the maleimide ring in the last steps of the synthesis^{7,8} or by selective functionalization of a 3,4-dihalomaleimide by Grignard addition and cross-coupling reaction. ^{9,10} Generally, the cross-coupling reactions afford symmetrical 3,4-disubstituted maleimides, ¹¹ and only one example, using alkylzinc reagents, has proved to be selective in the monocoupling reaction. ¹²

During the past few years, we have shown that indium organometallics are useful reagents in metal-catalyzed cross-coupling reactions. 13 The main features of triorganoindium reagents (R₃In) in cross-coupling reactions are their high efficiency, versatility, and chemo- and stereoselectivity. Additionally, R₃In are particularly effective in the synthesis of functionalized heterocyclic compounds. 14 In this communication, we report the synthesis of unsymmetrically 3,4-disubstituted maleimides by selective cross-coupling reactions of R₃In with 3,4-dihalomaleimides.

Our study began with an investigation into the reactivity and selectivity of triorganoindium reagents in the palladiumcatalyzed cross-coupling reaction with 3,4-dibromomaleimide 1 (Table 1). Initially, the reaction of R₃In with 1, using the most commonly used commercially available palladium catalysts Pd(Ph₃P)₄ or Pd(Ph₃P)₂Cl₂, under reflux gave the double cross-coupling product as the major product. Further screening of the reaction conditions showed that on using Pd(PhCN)₂Cl₂ (5 mol %) as the catalyst¹⁵ the monocoupling product could be obtained regioselectively at rt in good yields after 2-6 h, using only 40 mol % of the triorganoindium reagent as the nucleophile. For example, the reaction of tri*n*-butylindium with **1** afforded the monocoupling product **3** in 81% yield (Table 1, entry 1). The reaction of arylindium reagents (4-methoxyphenyl, 1-naphthyl) with 1 gave similar yields and selectivities (78-79%, entries 2 and 3). Interestingly, the 3-bromo-4-indolylmaleimide 6 was prepared by reaction of tri(5-methoxy-3-indolyl)indium with 1, and this reaction gave 75% yield (entry 4). These results demonstrate the high selectivity of the system R₃In:Pd(PhCN)₂Cl₂ in the coupling reactions with 3,4-dibromomaleimides and the high atom economy of R₃In in transferring all three groups to the electrophile.

The reactivity of R₃In with 3,4-dichloromaleimide **2** was also studied. ¹²Initial studies showed that the reaction occurs

Table 1. Palladium-Catalyzed Mono Cross-Coupling Reactions of Indium Organometallics with 1 and 2

2, R = Bn, X = Cl		7–11, R = Bn, X = Cl		
entry	maleimide	R^1	product	yield (%)
1	1	<i>n</i> -Bu	Me ONNO n-Bu Br	81
2	1	4-MeOC ₆ H ₄	Me ONNO Br	78
3	1	1-Naphthyl	MeO Me	79
4	Me 1	eO TBS	N 6	75
5	2	Ph	ON O	67
6	2	4-MeOC ₆ H ₄	O N O CI	69
7	2	1-Naphthyl	Meď Bn CI CI 9	71
8	2	PhC≡C	Ph 10	40^{a}
9	2	n-Hexyl	0 N O N O N O N O N O N O O N O O O O O	58

^a The reaction product (10) was obtained along with 32% of the symmetrical cross-coupling product.

1286 Org. Lett., Vol. 11, No. 6, 2009

^{(7) (}a) Hughes, T. V.; Cava, M. P. *Tetrahedron Lett.* **1998**, *39*, 9629–9630. (b) Faul, M. M.; Winneroski, L. L.; Krumrich, C. A. *J. Org. Chem.* **1998**, *63*, 6053–6058. (c) Faul, M. M.; Winneroski, L. L.; Krumrich, C. A. *Tetrahedron Lett.* **1999**, *40*, 1109–1112. (d) Roy, S.; Roy, S.; Gribble, G. W. *Org. Lett.* **2006**, *8*, 4975–4977.

^{(8) (}a) Bergman, J.; Koch, E.; Pelcman, B. *J. Chem. Soc., Perkin Trans. 1* **2000**, 2609–2614. (b) Li, Y.; Zou, H.; Gong, J.; Xiang, J.; Luo, T.; Quan, J.; Wang, G.; Yang, Z. *Org. Lett.* **2007**, *9*, 4057–4060. (c) Inoue, S.; Fukumoto, Y.; Chatani, N. *J. Org. Chem.* **2007**, *72*, 6588–6590.

^{(9) (}a) Brenner, M.; Rexhausen, H.; Steffan, B.; Steglich, W. *Tetrahedron* **1988**, 44, 2887–2892. (b) Brenner, M.; Mayer, G.; Terpin, A.; Steglich, W. *Chem.—Eur. J.* **1997**, 3, 70–74. (c) Marminon, C.; Pierré, A.; Pfeiffer, B.; Pérez, V.; Léonce, S.; Joubert, A.; Bailly, C.; Renard, P.; Hickman, J.; Prudhomme, M. *J. Med. Chem.* **2003**, 46, 609–622.

^{(10) (}a) Neel, D. A.; Jirousek, M. R.; McDonald, J. H., III. *Bioorg. Med. Chem. Lett.* **1998**, *8*, 47–50. (b) Routier, S.; Peixoto, P.; Mérour, J.-Y.; Coudert, G.; Dias, N.; Bailly, C.; Pierré, A.; Léonce, S.; Caignard, D.-H. *J. Med. Chem.* **2005**, *48*, 1401–1413. (c) Pews-Davtyan, A.; Tillack, A.; Ortinau, S.; Rolfs, A.; Beller, M. *Org. Biomol. Chem.* **2008**, *6*, 992–997.

efficiently using Pd(PhCN)₂Cl₂ (5 mol %) as the catalyst, although longer reaction times are required and slightly lower yields obtained in comparison to the analogous dibromide. We believe that the lower reactivity favors the double cross-coupling product, which is the secondary product in all reactions.¹⁶

Under these conditions, the reaction of arylindium (phenyl, 4-methoxyphenyl, 1-naphthyl) reagents with **2** produced the selective cross-coupling products **7–9** in good yields (67–71%, Table 1, entries 5–7). The reaction using tri(phenylethynyl)indium afforded the monocoupling product **10** in 40% yield, accompanied by 32% of the symmetrical cross-coupling product (Table 1, entry 8). Interestingly, the reaction with an alkylindium derivative such as tri(*n*-hexyl)indium gave the 3-alkyl-4-chloromaleimide **11** in a satisfactory 58% yield (Table 1, entry 9). Overall, these results demonstrate the high versatility of R₃In (sp, sp², sp³) in cross-coupling reactions with 3,4-dihalomaleimides, and they represent the first general method for the synthesis of 3-halo-4-substituted maleimides by cross-coupling reactions.

To prepare unsymmetrically 3,4-disubstituted maleimides, we explored a second cross-coupling reaction using the previously prepared 3-halo-4-substituted maleimides 3–11. In the first experiments, the reaction of 3-bromomaleimides 3–6 with R₃In afforded the corresponding products in low yields. Further research showed that good yields could be obtained on using Pd(DPEphos)Cl₂ (5 mol %)¹⁷ as the catalyst and by performing the reactions under reflux for 5–8 h. Under these conditions, the 3-bromo-4-substituted maleimides 3–6 reacted with aryl-, alkyl-, or alkynylindium reagents (50 mol %) to give the corresponding 3,4-disubstituted maleimides, i.e., alkyl-aryl (12 and 13, 80–89% yield, Table 2, entries 1 and 2), 1-naphthyl-alkynyl (14, 84% yield, Table 2, entry 3), or 3-indolyl-1-naphthyl (15, 88% yield, Table 2, entry 4).

Further evidence for the high efficiency of indium organometallics in these reactions was provided by the synthesis

Table 2. Palladium-Catalyzed Cross-Coupling Reactions of Indium Organometallics with 3-Bromo- and 3-Chloro-4-Substituted Maleimides **3–11**

entry	3-halo- maleimide	R ²	product	yield (%)
1	3	Ph	Me ONO n-Bu	89 ^a
2	4	Ме	Me O N O Me	80^a
			M-0 [']	
3	5	Mc ₃ SiC≡C	Me O N O 14 SiMe ₃	84 ^a
4	6	1-Naphthyl MeC	Me O N O	88 ^a
5	7	leO N TBS	TBS ₽n O⇒ ^N →O	.ОМе 88 ^h
6	8	2-Thiophenyl	O N O	82 ^b
7	9	<i>n</i> -Bu	MeO Bn O N O n-Bu 18	87 ^b
8	10	4-MeOC ₆ H ₄	Bn ON ON O	90 ^b
9	11	Ph	Pn OMe O N O-C ₆ H ₁₃ 20	91 ^b

 $[^]a$ Reactions performed with Pd(DPEphos)Cl $_2$ (5 mol %) as catalyst. b Reactions performed with Pd(Ph $_3$ P) $_4$ (5 mol %) as catalyst.

Org. Lett., Vol. 11, No. 6, 2009

^{(11) (}a) Shen, L.; Prouty, C.; Conway, B. R.; Westover, L.; Xu, J. Z.; Look, R. A.; Chen, X.; Beavers, M. P.; Roberts, J.; Murray, W. V.; Demarest, K. T.; Kuo, G.-H. *Bioorg. Med. Chem.* **2004**, *12*, 1239–1255. (b) Shorunov, S. V.; Krayushkin, M. M.; Stoyanovich, F. M.; Irie, M. *Russ. J. Org. Chem.* **2006**, *42*, 1490–1497. (c) El Yahyaoui, A.; Félix, G.; Heynderickx, A.; Moustrou, C.; Samat, A. *Tetrahedron* **2007**, *63*, 9482–9487.

⁽¹²⁾ Stewart, S. G.; Polomska, M. E.; Lim, R. W. Tetrahedron Lett. **2007**, 48, 2241–2244.

^{(13) (}a) Pérez, I.; Pérez Sestelo, J.; Maestro, M. A.; Mouriño, A.; Sarandeses, L. A. J. Org. Chem. 1998, 63, 10074–10076. (b) Pérez, I.; Pérez Sestelo, J.; Sarandeses, L. A. Org. Lett. 1999, 1, 1267–1269. (c) Pérez, I.; Pérez Sestelo, J.; Sarandeses, L. A. J. Am. Chem. Soc. 2001, 123, 4155–4160. (d) Rodríguez, D.; Pérez Sestelo, J.; Sarandeses, L. A. J. Org. Chem. 2003, 68, 2518–2520. (e) Pena, M. A.; Pérez Sestelo, J.; Sarandeses, L. A. Synthesis 2003, 780–784. (f) Rodríguez, D.; PérezSestelo, J.; Sarandeses, L. A. J. Org. Chem. 2004, 69, 8136–8139. (g) Riveiros, R.; Rodríguez, D.; Pérez Sestelo, J.; Sarandeses, L. A. Org. Lett. 2006, 8, 1403–1406. (h) Riveiros, R.; Pérez Sestelo, J.; Sarandeses, L. A. Synthesis 2007, 3595–3598. (i) Caeiro, J.; Pérez Sestelo, J.; Sarandeses, L. A. Chem.—Eur. J. 2008, 14, 741–746. (j) Riveiros, R.; Saya, L.; Pérez Sestelo, J.; Sarandeses, L. A. Eur. J. Org. Chem. 2008, 1959–1966.

^{(14) (}a) Pena, M. A.; Pérez Sestelo, J.; Sarandeses, L. A. *J. Org. Chem.* **2007**, 72, 1271–1275. (b) Mosquera, A.; Riveiros, R.; Pérez Sestelo, J.; Sarandeses, L. A. *Org. Lett.* **2008**, *10*, 3745–3748.

⁽¹⁵⁾ This catalyst has been already useful in selective palladium-catalyzed cross-coupling reactions: Zhang, L.; Meng, T.; Fan, R.; Wu, J. J. Org. Chem. 2007, 72, 7279–7286.

Table 3. Sequential Cross-Coupling of Triorganoindium Reagents with 1

entry	R^1 , R^2	product	yield (%)
1	$R^{1} = n-Bu$ $R^{2} = Me$	Me ONN N-Bu Me 21	87
2	$R^1 = 2$ -Thiophenyl $R^2 = PhC \equiv C$	Me ON NO 22 S	89
3	$R^{1} = Ph$ $R^{2} = 4\text{-MeOC}_{6}H_{4}$	Me N 23	68
4	$R^{1} = \bigcup_{\substack{N \\ Boc}} \frac{\xi}{\xi}$ $R^{2} = Me_{3}SiC \equiv C$	Boc 24	86

of unsymmetrically 3,4-disubstituted maleimides by reaction of R_3 In with the 3-chloro-4-substituted maleimides 7-11. The yields were relatively poor on using the same reaction conditions as before, but the use of $Pd(Ph_3P)_4$ (5 mol %) as catalyst and performing the reactions in a sealed tube at 80 °C for 8 h led to increases in the yields. The cross-coupling reactions of heteroaryl- (3-indolyl, 2-thiophenyl), aryl-, and alkylindium reagents afforded the corresponding 3,4-disubstituted maleimides (16-20) in good yields (82-91%, Table 2, entries 5-9). Unfortunately, the cross-coupling reactions of trivinylindium with bromo- or chloromaleimides gave unstable cross-coupling products in low yields.

One particular feature of the cross-coupling reactions using indium organometallics is their suitability for the construction of two different carbon—carbon bonds in a one-pot pro-

cedure. Lab. For this reason, we explored the possibility of synthesizing unsymmetrically 3,4-disubstituted maleimides in a one-pot procedure. It was found that the reaction of dibromomaleimide 1 with 40 mol % of R_3 In in the presence of Pd(PhCN)Cl₂ (5 mol %) in THF at rt, followed by the addition of a different indium organometallic reagent after completion of the first coupling (TLC test), afforded, after 12 h at rt, the disubstituted product in good yields. These results show that a variety of aryl-, heteroaryl-, alkyl-, and alkynylindium reagents can be coupled efficiently with 1, and the results are summarized in Table 3 (68–89%). To the best of our knowledge, this constitutes the first one-pot approach to 3,4-disubstituted maleimides by cross-coupling reactions.

In summary, a new method for the synthesis of 3,4-disubstituted maleimides using palladium-catalyzed cross-coupling reactions with indium organometallics was developed. The synthesis was performed by selective stepwise or sequential one-pot procedures from 3,4-dibromo- or 3,4-dichloromaleimides. The reactions give good yields, have high selectivity, and have a high atom economy with respect to the organic groups. Following this method, a wide variety of unsymmetrically 3,4-disubstituted maleimides possessing alkyl, aryl, heteroaryl (including 3-indolyl), and alkynyl groups in their structure were synthesized. Further applications of this method in the synthesis of novel maleimides are now under investigation.

Acknowledgment. This research was supported by the Spanish Ministerio de Educación y Ciencia (CTQ2006–06166), Xunta de Galicia (INCITE08PXIB103167PR), and FEDER.

Supporting Information Available: Experimental procedures, spectroscopic and analytical data, and copies of NMR spectra for compounds prepared. This material is available free of charge via the Internet at http://pubs.acs.org. OL900063P

Org. Lett., Vol. 11, No. 6, 2009

⁽¹⁶⁾ In the reactions with 1 and 2, the use of an excess of R_3 In (>40 mol %) increases the yield of the symmetrical cross-coupling products.

⁽¹⁷⁾ DPEphos = bis([o-(diphenylphosphino)phenyl] ether. (a) Kranenburg, M.; van der Burgt, Y. E. M.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Goubitz, K.; Fraanje, J. Organometallics 1995, 14, 3081–3089. (b) Huang, Z.; Qian, M.; Babinski, D. J.; Negishi, E. Organometallics 2005, 24, 475–478.

^{(18) (}a) Pena, M. A.; Pérez, I.; Pérez Sestelo, J.; Sarandeses, L. A. *Chem. Commun.* **2002**, 2246–2247. (b) Pena, M. A.; Pérez Sestelo, J.; Sarandeses, L. A. *Synthesis* **2005**, 485–492.